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Abstract

The eflectiveness of Newton’s method for finding an unconstrained mini-
mizer of a strictly convex twice continuously differentiable function has prompted
the proposal of various modified Newton methods for the nonconvex case.

Linesearch modified New*on methods utilize a linear combination of a de-
scent direction and a direction of negative curvature. If these directions are
sufficient in a certain semse, and a suitable linesearch is used, the resulting
method will generate limit points that satisfy the second-order necessary con-
ditions for optimality.

We propose an efficient method for computing a descent direction and a
direction of negative curvature that is based on a partial Cholesky factoriza-
tion of the Hessian. This factorization not only gives theoretically satisfactory
directions, but also requires only a partial pivoting strategy, i.e., the equivalent
of only two rows of the Schur complement need be examined at each step.

Keywords: Unconstrained minimization, modificd Newton method, descent
direction, negative curvature, Cholesky factorization

*Research partially supported by the Géran Gustafsson Foundation and the Swedish National
Board for Technical Development.

'} Research supported by the Department of Energy Contract DE-FG03-92ER25117, the Na-
tional Science Foundation Grants DDM-9204208, DDM-92011547, and the Officr: of Naval Research
Grant N00014-90-J-1242.

$This paper is simultaneously issucd as Report TRITA-MAT-1993-9, Department of Mathe-
matics, Royal Institute of Technology; Report LLMS 93-2, Department of Mathematics, University
of Califormia at San Diego; and Report SOL 93-1, Department of Operations Rescarch, Stanford
University. It supersedes part of Report SOL 8912 “A modified Newton method for unconstrained
minimization”, Department of Operations Research, Stanford University, 1989,




2 Partial Cholesky faclorization

1. Introduction

We consider the unconstrained minimization of a twice continuously diiferentiable
function f: IR® — IR. If f is strictly convex, the excellent local convergence proper-
ties of Newton’s method make it one of the most effective methods for minimization
(see, e.g., Ortega and Rheinboldt [OR70]).

In the non-convex case, various modified Newton methods have heen proposed
that ensure convergence from an arbitrary starting point. Here we focus on the
class of linesearch modified Newton methods (for a complete discussion of modificd
Newton methods and their relative merits, see, e.g., Shultz et al. [SSBS3], Dennis
and Schnabel [DS89]). Linesearch modified Newton methods genc.ite o sequence
{ze}2, of improving estimates of a local minimizer. At iteration k, a linesearch is
performed along a path formed from a linear combination of two directions s, and
di, where either s¢ or d; can be zero. The directions s and d; are chosen such
that g7s, < 0 and dTH d, < 0, where g, and JI; denote the gradient Vf(z) and
Hessian V3f(2) evaluated at x,. (Implicitly, we also assune the condition gfd, < 0.
which can be imposed with a trivial sign change of d;.) Each nonzero s, satisfies
g7s, < 0 and is known as a descent dircction. Each nenzero d satisfies d{ 1, d, < 0
and is known as a direction of negative curvature. If dg is nonzero, fI; must have
at least one negative eigenvalue. (Henceforth we will sacrifice precision for the sake
of brevity and refer to the sequences {s.} and {d,} as sequences of “descent di-
rections” and “directions of negative curvature”.) Linescarch methods of this type
have been proposed by Gill and Murray [GM74], Fletcher and Freeman [FF77],
McCormick [McC77], Mukai and Polak [MP78], Kaniel and Dax [KD79], and Gold-
farb {Gol80].

Moré and Sorensen [MS79] have shown that if: (i) a modified Newton method is
used in conjunction with a suitable linesearch; and (ii) the directions s, and d; arc
sufficient in the sense that the sequences {s;} and {d,} are bounded and satis{v

g{sk—-»o => g —0 and s — 0, (1.1a)

and
dTHd, = 0 = min{Anin(/:),0} =0 and d, — 0, (1.1h)

then every limit point of the resulting sequence {2,}32, will satisfy the second-order
necessary conditions for optimality.

It has been observed in practice that the number of iterates at which the Hes-
sian is positive definite is large compared to the total number of iterations. Since
linesearch methods revert to Newton’s method when the Hessian is sufficiently pos-
itive definite, it would scem sensible to use a modified Newton method based on
the most efficient method for solving a symmetric positive-definite system. This is
the motivation for the modified Cholesky factorization proposed by Gill and Mur-
ray [GM74]. However, it has been shown by Moré and Sorcnsen [MS79] that this
factorization may not give directions of negative curvature that are sufficient in the
sense of (1.1b). This paper is motivated by the need for an algorithm with the
efficiency and simplicity of the Cholesky factorization, but with the guarantee of
convergence when used with a suitable linesearch. It is shown in Section 3 that a
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partial Cholesky factorization can give search directions that are sufficient in the
sense of (1.1).

To simplify the notation, we will drop the subscript & when referring to the
quantities g, H,, s and d; at a specific iteration. Unless otherwise stated, || - |}
refers to the vector two-norm or its induced matrix norn. The vector ¢, denotes
the j-th unit vector whose dimension is determined by the context.

2. The partial Cholesky factorization

The partial Cholesky factorization of H is a variant of the standard Cholesky fac-
torization with diagonal pivoting. The algorithm is stated in outer-product form,
where the Schur complement associated with the unfactorized part of H is up-
dated explicitly at each step (see, e.g., Golub and Van Loan [GV89, page 143] and
Higham [Hig90]).

At each step, the largest diagonal is selected as pivot and is used to climinate a
row and column from the Schur complement. The algorithm continues until either
all the matrix has been factorized or the pivot is considered unacceptable. The final
factors are therefore uniquely determined by the rule used to accept the pivot (i.c.,
the rule used to terminate the elimination). Termination is controlled by a preas-
signed scalar parameter v (0 < ¥ < 1). A pivot is acceptable if it is both positive
and larger in absolute value than v times the off-diagonal of largest magnitude in
the pivot row and column. At each step, the determination of an acceptable pivot
requires the examination of the diagonals and a single row of the Schur comple-
ment. (For a similar scheme in the context of quadratic programming, sce Casas
and Pola [CP90].)

It will be shown below that once a pivot is deemed nnacceptable (and hence
the factorization is terminated), a suitable direction of negative curvature can he
determined from the elements of the remaining Schur complement.

Let P denote the permutation matrix representing the symiunetric interchanges
performed during the factorization. If n, denotes the number of steps needed before
termination, the factorization implicitly identifies a leading n; x n; positive-definite
submatrix of the permuted matrix PTH/ P. In terms of a partition /{,,, H;», Hay
and H,, of PTH P, we have

IIIX }Ii'..’ _ L“ Bl L’{l L:_I"l (2 1)
Hoy Iy |~ \ Loy I D, I '

where L;; is unit lower triangular and B, is a positive-definite diagonal matrix.
The submatrix H,; is positive definite, and Hy; = LB, L], is its usual Cholesky
factorization obtained using diagonal pivoting. The factorization may be written
briefly as H = LDLT, where L is a row-permuted lower-triangular matrix with

L=p| ™ and B = B‘, . (2.2)
Ly I By

We will use n4 to denote the size of e, so that #, + ny = n. A “psendo-matiab™
version of the partial Cholesky algorithm is given in Algorithm 2.1,
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The curvature along any direction d computed from the partial Cholesky factor-
ization is related to the magnitude of the smallest eigenvalue of the Schur comple-
ment B;. The following lemma relates the smallest eigenvalue of B, to the smallest
eigenvalue of H.

Lemma 2.1. Let H be a symmetric n X n matriz with at least one negative eigen-
value. Let the partial Cholesky factorization of H be denoted by H = LBL”, where
PTH P is partitioned as in (2.1). Then

Amin(B2) € Amin(J1) and D, = YTIIY,

Y =P —Ll_lTLgl =P _]1;111112 i (o 0
1 I

Proof. The inequality Apin(B2) < Anin(H) can be established using the identity

n,, Hi 0 Ly ;
= D LT Lt 0, 2.4
( dy Ho ) ( B, ) * ( Ly ) : ( e ) (24)

which is a rearrangement of the factorization {2.1). The eigenvalues of /[ and
PTHP are identical. Moreover, the positive-definiteness of B, implies that the
second term on the right-hand-side of (2.4) is positive semidefinite. Since the
eigenvalues of PTH P cannot increase on subtraction of a positive semidefinite ma-
trix, it must follow that min{0, Amin(B2)} < Amin(H) (see e.g., Golub and Van
Loan [GV89, page 411]). From the assumption Anin(H) < 0, we conclude that
Amin(B2) < Anin(H), as required.

To show that the matrix Y (2.3) is well defined, it is sufficient to verify that
H'H,, = L7TLY,. This is an immediate consequence of multiplying the partitioned
right-hand-side matrix from (2.1) to obtain 1}, = L;; B, LT, and /1,, = L,; B, L],.

Finally, the identity YTHY = B, may be verified by expressing L™/ - T = B
in the partitioned form

Li} H, His Lyt —Lifet (B
. A A Hay Han I - .,

from which the result follows. g

where

Note that the matrix ¥ (2.3) consists of the last n, columns of L=7. Our analysis
requires bounds on the norms of Y, I, and L~!, which are provided by the following
lemma given by Higham {Hig90].

Lemma 2.2. Let H be factorized using the partial Cholesky factorization described
in Algorithm 2.1. If PTH P is partitioned as in (2.1), then

1 /1
(3) NELTLRN < 2430 - mams - 1)
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- 1 /1
(b) s LIkl < ;\/ 5(4"' -1);

© Ll < 25

(@) 127 < Z2m.

Proof. Part (a) follows immediately from Lemma 9.4 of Higham {Hig90] and the
fact that the elements of L,, are bounded in absolute value by 1/r. Part (b) is
a consequence of part (a), since L e, is an ny-vector whose elements are hounded
in absolute value by 1/v. Part (c) follows from the fact that all elements of L are
bounded by 1/v in absolute value. Similarly, part (d) is a consequence of the fact
that all elements of L-! are bounded by 2™ ~!/v (see Higham [Hig90] for details).
i

2.1. Computation of the descent direction

We now discuss the application of the partial Cholesky factorization to the calcu-
lation of a descent direction s, satisfying (1.1a). Let B be any positive-definite
modification of B, i.e., B is a positive-definite matrix with ||B ~ B|| “small” and
B = B when B is suﬂ‘icxently positive definite. There are many choices for B~—f{or
example, consider the block-diagonal matrix B = diag([R;, I), where [ is the identity
matrix of order n;. With this definition, when n; = n and H is sufficiently positive
definite, B, = B, and s satisfies the usual Newton equations s = —yg.

Lemma 2.3. Let H be factorized using the partial Cholesky faclorization described
in Algorithm 2.1 and assume that PTHP is parlitioned as in (2.1). Let B be «
positive-definite modification of B, and let s salisfy

LBLTs = —y. (2.5)
Then,
T v? 2 niqm-!
-9’82 mﬂﬂ” and |[s]| € 2,\.,,.,,(B)"J“
Proof. From the definition of s in (2.5) we have
s=~-LTB 'L (2.6)

Premultiplying (2.6) by g7 gives

_ 1
T Tr-TR~1yr~-1 T

=g s=g L7 BT L7y 2 rrrse——s0 0

LU Amax(B)

and the required lower bound on ~g¢7s follows from part (c) of Lemma 2.2. To

obtain the bound on [|s]] we derive the inequality ||s|| < Anax(B-DIL Pl by

taking norms of both sides of (2.6), substituting for L from (2.2) and using norm

inequalities. The required upper bound follows from part (d) of Lemma 2.2.
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2.2. Computation of the direction of negative curvature

The formula for d is derived from a method for computing directions of negative
curvature in quadratic programming (see Forsgren et al. [FGM91]). The approach
is based on the observation that, in the positive-definite case, the Newton direction
is a minimizer of a quadratic model with gradient ¢ and Hessian /. In particular,
the Newton direction can be found by a quadratic programming algorithm that
minimizes the model function while successively releasing variables from temporarily
fixed values. This analogy can be extended to the indefinite case, where the variables
corresponding to H; are temporarily fixed at their current values, and a direction
of negative curvature is defined by releasing either one or two of the fixed variables.
This scheme corresponds to using a direction of negative curvature that is a multiple
of either y; or y; + y;, where y; and y; denote columns ¢ and j of the matrix ¥ (2.3).
The following lemma shows how the indices ¢ and j are determined from the clements
of By=YTHY.

Lemma 2.4. On termination of the partial Cholesky factorization with diagonal
pivoting, let PTH P be partitioned as in (2.1). If ny = n, define d = 0. Otheruwise,
if ny < n, define d as follows. Given p = maX;sn, j>n, |bij| and any pair of indices
q (¢ > ny) and r (r > n;) such that |b,| = p, let d be the solution of

e‘] ifq =r,

LTd = \/pv, where v= 1 ’
—E(eq —sgn{b,.)e.) otherwise.

7
Then, if Amin{ H) 2 0, then d = 0. Otherwise, if Apnin(H) < 0, then

)

1, 1 24m -\
-l < P s - (1 2 an
and 7 )
Hd < 341 - v) i (I1).

d7d = na(30° + 2(4™ — 1))

Proof. If n; = n, then A,;,(H) > 0, and the lemma holds from the definition d = 0.
For the remainder of the proof, assume that n; < n.

First, it is necessary to show that ¥ < wvp, where ¥ = max{{max;s,, bi},0}.
If the factorization terminates with ¥ = 0, the inequality v < vp is trivially satis-
fied. If the factorization terminates with ¥ > 0, there exists an index ¢ (¢ > n,)
such that b, = 4. Since ¥ must be an unacceptable pivot, we can infer that
¥ < VMaX;z1i>n, |bie]. Consequently, if n; < n, it must hold that y < vp.

Let d, and v; denote the first n; components of Pd and v respectively. Similarly,
let d, and v, denote the last n, components of Pd and v. The definitions of d and
v imply that ||v,{| = 0, {|v.}| = 1, and dy = \/pv,. Therefore,

dTd = d%d, + d¥d, > pviv, = p. (2.7)
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Similarly, the definition of d and (2.2) imply that

d'd < (1+ | L5 Lopl*)e < (1 + 3@———9) P, (2.8)

32

where the last inequality follows from Lemma 2.2. Combining (2.7) and (2.8} yields

32

p<dlis< (1+-2—(4—"'—T—-1—)) p. (2.9)

Consider the case p = 0, which is equivalent to H being positive semidcfinite
and singular with Apin(H) = 0. In this case, (2.9) implies d = 0, as required.

Now assume that p > 0. First, if g =, then {b,,| = p. Since by, < v < wvp < p,
it must hold that b,, = —p, and from the definition of 4 we obtain the bound

dTHd = pb,, < —(1 - v)p*. (2.10)
Alternatively, if ¢ # 7, then the definition of d yiclds

dTHd = £(byq + ber — 2berl) < p(7 = ) S = (1= 0)o", (2.11)

where the inequalities follow from the conditions by, < v, b,. < ¥ and p 2 7/v.
Since the magnitude of every element in B. is bounded by p, the Gershgorin
circle theorem and Lemma 2.1 imply

1 1
> - A h) P ——Ami . .
p2 ngAm'“(B') > n._,’\"""(H) (2.12)

Combining (2.9), (2.10), (2.11) and (2.12) we obtain

d"Hd <_ 3 (1 - v) <_ 31 - v)
dd = T34 2@m - 1) = T3t + 2(4m - 1))

Amin(II)» (2.13)

as required.

Since, by definition, Apin(J1) < dTHd/d"d, the left-most inequality of (2.13) gives
an upper bound on p, which in conjunction with (2.9) and (2.12) give the bhounds
on dd as

1 L 247 = 1)\*
—_— <dTd < ~ Bt : .
nzAm,n(H) <dd g~ (1 + =53 ) Amin( 1)

This lemma gives a relation between the curvature along d and the smallest
eigenvalue of H, which is the “best possible” curvature. The bound is exponential
in n,, but the computational experiments discussed below imply that the bound is
unlikely to be tight in practice. However, as in Iligham {Hig90], we observe that
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there do exist matrices whose bound is “almost” tight. For given n (n > 3) and 6,
define L(0) and B(#) as

(1 )

—-cosf 1
~cosf —~cosf 1
L(g) = : and

—~cos# —cosb - cosf 1
—cosf —cos8 ~cosf -—cosf |

\ —cosf —cosb —cosf ~cos@ 0 1

[ 1 \

sin® @

sin* 4
B(8) =
sin® =3 g

0 -1
\ -10)
Define H{6) = L(8)B(8)L(8)T. If § = 0, it is shown in Lemma A.l of Appendix A
that Amin(H(0)) = =3(v/n? +2n =7 - n + 1), where

4
~1 < Amin(H(0)) < ~1 4 ——
(H(0)) t T
If 6 = 0, the partial Cholesky factorization with diagonal pivoting gives n, = I.
If d(8) denotes the direction of negative curvature associated with //(#). we obtain
d(0)TH(0)d(0) 1

a0yd0) - 3 (210

and d(0) is a satisfactory direction of negative curvature. Ilowever, if # is nonzero, it
fullows from the analysis of iiigham [Hig90)] that the partial Cholesky factorization
with diagonal pivoting will define L(#) and () as factors with n; = n - 2 for all
8 # 0. Moreover,

lim d(0)TH(8)d(8) - 3

60  d(8)7d(9) 142.4n-2°
and for 8 near zero, the curvature along d(8) is close to the worst possible value
predicted by Lemma 2.4 (see Higham [Hig90] for the details). This “pathological”
example arises because the principal submatrix of order n — 2 of JH(8) is positive
deﬁmfe but arbitrarily close to being singular so that ||/ ;' f,.]| (or equivalently
NL7TLT ) is very large. This is reflected in arbitrarily small pivot elements.

A numerical experiment was devised to investigate if the bound of Lemma 2.4

is likely to be sharp for an arbitrary indefinite matrix. Matlab 4.0 was used to gen-
erate directions of negative curvature for a large set of random indefinite symmetric
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matrices of order 50. Each H was defined as QAQT, with Q a random orthogonal
matrix and A a random diagonal matrix with at least one negative element. The
matrix ¢ was obtained from the QR-factorization of a 50 x 50 matrix whose ele-
ments were taken from an independent normal distribution with zero mean and unit
variance. The elements of A were taken from an independent uniform distribution in
the interval [-25, 25]. Directions of negative curvature were computed with v-values
V€, 0.05,0.10, ..., 0.95, and 1 — /¢, where ¢ denotes the machine precision. A new
random matrix was generated for each factorization, giving a total of 1500 matrices
for each value of v. Figure 2.1 gives the outcome of the computational experiment.
The three lines depict the maximum, mean, and minimum values of the ratio r of
dTHd/d"d to Amin(H). Each “4+” represents the value of  for a particular value of
the parameter v.

0.7 T \J Y T L) Y ¥ ¥ Y

0.6}

ost * $ ¢
i +
0.4F
| 3
031
[ +
ﬂ?
0. l I

Illllll
0.1 0.4 0.5

+
4+

+
H+ W+ b
b -

+

+ S

H +H N

H#H+ ++ +

0.6 0.7 08 09

—

v

Figure 2.1: Curvature ratio r as function of v.

The bound on r given by Lemma 2.4 is approximately maximized for v = 2/3. 1f,
for n = 50, this optimal value gives n; = 49, the theoretical bound is approximately
7 x 10-3'. This should be compared with the computed values of r, which never
fell below 0.05 when v was larger than 0.5. The minimum value of r attained a
maximum of 0.0809 for v = 0.9. Based on these results, we would recommend a
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value of v in the range (0.5, 0.65). Note that the larger the value of v, the smaller
the value of n, and consequently, the smaller the amount of computation.

3. Theoretical results

The partial Cholesky factorization can be used as the basis for a descent m=thod for
minimizing a twice-continuously differentiable function f : R® — 2. This method
defines a sequence {z;}i%, of improving estimates of a local minimizer.

Let 2o be any starting point such that thelevel set {z | f(z) < f(z0)} is compact.
Let {s;} and {d,} be bounded sequences such that each s, is a descent direction
that satisfies (1.1a) and each d; is a direction of negative curvature that satisfies
(1.1b). Moré and Sorensen [MS79] show that with an appropriate linesearch, certain
linear combinations of s, and d; define x4, so that every limit point of {z,}32,
will satisfy the second-order necessary conditions for optimality—i.c., at every limit
point #, V(&) is zero and V?f(Z) is positive semidefinite. The main result of this
paper—that the search directions obtained using the partial Cholesky factorization
are sufficient in the sense of Moré and Sorensen [MS79]—is stated in the following
theorem.

Theorem 3.1. Let {z,}°, be a sequence of iterates contained in a compact region
of R*, and assume that f: " — I is a twice-continuously differentiable function.
For each k, define gp = Vf(xi) and I, = V*¥(z,), and let Iy = LB LT be the
partial Cholesky factorization of H) as Jescribed in Algorithm 2.1. Given positive
constants ¢; and ¢a (¢, < ¢2), let 5. be defined from Lemma 2.3 with the additional
requirement that ¢; < Amin{B) < Amax(Bi) € €a. Finally, let d, be defined from

Lemma 2.4. Then, {s:} and {d.} are bounded scquences such that

glsy =0 = g —0 and s —0

and
dTHidy = 0 = min {Anin(M1:),0} - 0 and d, — 0.

Proof. Since {z,} lies in a compact region, the smoothness of f implies that {|jg.]]}
and {||H;||} are bounded.

With the existence of ¢, and ¢,, and the boundedness of ||g|], Lemma 2.3 implies
that {s,} is a bounded sequence, and g7s; - 0 implies g — 0 and s, — 0, as
required.

Lemma 2.4 and the boundedness of || H,{| imply that {d;} is a bounded sequence,
and d]H,d, — 0 implies di — 0 and min{Anin(H:),0} — 0, as required. 1

If V2f(z,) is sufficiently positive definite, all pivots will be acceptable aird the
partial Cholesky factorization will terminate with n, = n. This implies that if
{2}, has a limit point 7 at which V*f(#) is sufficiently positive definite, then the
iterates will be identical to those of Newton’s method for £ sufliciently large.
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4. Discussion

The partial Cholesky factorization may be implemented in other ways. For example,
the calculation of the matrix #,;, can be made independent of the calculation of the
descent direction s;. Once a direction of negative curvaturc has been defined, a
descent direction can be calculated by forming the modified Cholesky factorization
of B, (see, e.g., Gill and Murray [GM74], Schnabel and Eskow [SE90]).

The algorithm of Section 2.2 requires the examination of the diagonals and a sin-
gle row of the Schur complement at each step. Alternative strategics can he devised
in which the complete Schur complement is examined under certain exceptional cir-
cumstances. For example, if a pivot is small, the pivot acceptance criterion could be
strengthened so that a pivot is acceptable if, in addition to the requirements of Algo-
rithm 2.1, it is larger in absolute value than vb,.,, where by, is either the diagonal
of largest magnitude in the Schur complement or the element of largest magnitude
in the full Schur complement. Each of these modifications gives an algorithm with
identical theoretical properties, but a potentially smaller value of n,. However, this
potential improvement is at the expense of an increase in the number of compar-
isons during the factorization. The pivot criterion that requires the examination of
the full Schur comnlement would cope successfully with the “pathological” H(8) of
Section 2.2 since the factorization would terminate after one step for 8 sufficiently
small.

5. Summary

We have shown how a partial Cholesky factorization can be uscd to define secarch
diiections suitable for a linescarch-based modified Newton method. The resulting
directions are suflicient in the sensc that it is possible to generate a sequence {2 }5%,
with limit points having a zero gradient and a positive-scinidefinite Tlessian.

To our knowledge, this is the first triangular factorization that not only gives
theoretically satisfactory directions, but also requires only a partial pivoting strat-
egy, i.e., the equivalent of only two rows of the Schur complement need be examined
at each step.
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A. Eigenvalues of H(0)

Lemma A.1. Let the n x n-matrices L(0) and B(0) be dcfincd as in Scction 2 for
# =0 and n > 3. Define H(0) = L(0)B(0)L(0)". Then A = —i(Vn'+2n~7 -
n + 1) is the smallest eigenvalue of IT(0), and ~1 <A < -1+ 4/(n+ 1).
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Proof. It is straightforward to verify that

[ 1 -1 -1 -« =1 -1 -1
-1 1 1 -+ 1 1 1
-1 1 1 - 1 1 1

HO=| + & @ i1
-1 1 1 -+ 1 1 1
-1 1 1 - 1 1 0
\-1 1 1 - 1 0 1}

Since B(0) has one negative eigenvalue and L(0) is nonsingular, Sylvester’s law
of inertia implies that H(0) has one negative eigenvalue (see e.g., Golub and Van
Loan {GV89, page 416]). Consequently, since A is negative for n > 3, it is enough
to show that it is an eigenvalue.

Assume that v = (1 -1 ~1...- —=1 @ @)T is an eigenvector of H(0) for some
scalar a. Then, if v is an eigenvector, there must exist a A such that

n—2-2a
-n+24+ a

i

A and (A.l1a)
Aa. {A.1b)

1l

It is straightforward to show that for n > 3, (A.1) has a negative solution A given

by
3= vat+2n-T-n+1 and a__\/n'~’+2n—7+n—3
- 2 - 4 '

The upper and lower bounds on A follow from the sequence of inequalities

/ 8 8
> 2_8= ————— > —_ —_—
n+12V(n+1)2-8=(n+1)/1 (n+l)'-"n+1 —

(Note that the lower bound can also be obtained directly from Lemma 2.1.) @
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Algorithm 2.1. An algorithm for the partial Cholesky factorization

%PARTCHOL Partial Cholesky factorization routine for a real symmetric
% matrix H.

% [L,B,perm,n;] = partchol(H)

% forms a permutation perm, a unit lower-triangular matrix

% L(perm,:) and a block diagonal matrix B such that L-B-L'=1II
% using the partial Cholesky factorization with diagonal pivoting.
% The size of the positive-definite principal submatrix obtained
% in the factorization is denoted by n,.

function [L,B,perm,n,] = partchol(H)
n = length(H);
perm = l:m;

B = H;

L = zeros(n);
v € (0,1);
k=1

ny = O;

while £ < n
{#r,r] = max([zeros(1,k-1) diag(B(k:n,k:n))’]);

ifk<n
tpr = max(abs(B(r,[1:r-1 7+1:n])));
else
Hpr = 0;
end
if g > 0and p, > v-pp
ny = k;

perm([k 7]) = perm([r ¥]);
B([k 7)) = B([r k2%
B(:fk 7]) = B(:[r K]);
L(perm(k:n),k) = B(km,k)/B(k,k);
ifk<n
B(k+1:m,k+1:n) = B(k+1:nk+1:n)-L{perm(k+1:n),k)-B(k A+ 1:n);
B(k+1:n,k) = zeros(n—k,1);
B(k,k+1:n) = zeros(1,n-k);
end
k=Fk+1;
else
L(perm{k:n),k:n) = eye(n-k+1);
k= n+l;
end
end
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